Requirement of Rad18 protein for replication through DNA lesions in mouse and human cells.

نویسندگان

  • Jung-Hoon Yoon
  • Satya Prakash
  • Louise Prakash
چکیده

In yeast, the Rad6-Rad18 ubiquitin conjugating enzyme plays a critical role in promoting replication although DNA lesions by translesion synthesis (TLS). In striking contrast, a number of studies have indicated that TLS can occur in the absence of Rad18 in human and other mammalian cells, and also in chicken cells. In this study, we determine the role of Rad18 in TLS that occurs during replication in human and mouse cells, and show that in the absence of Rad18, replication of duplex plasmids containing a cis-syn TT dimer or a (6-4) TT photoproduct is severely inhibited in human cells and that mutagenesis resulting from TLS opposite cyclobutane pyrimidine dimers and (6-4) photoproducts formed at the TT, TC, and CC dipyrimidine sites in the chromosomal cII gene in UV-irradiated mouse cells is abolished. From these and other observations with Rad18, we conclude that the Rad6-Rad18 enzyme plays an essential role in promoting replication through DNA lesions by TLS in mammalian cells. In contrast, the dispensability of Rad18 for TLS in chicken DT40 cells would suggest that the role of the Rad6-Rad18 enzyme complex has diverged considerably between chicken and mammals, raising the possibility that TLS mechanisms differ among them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis

Deoxyribonucleic acid (DNA) lesions encountered during replication are often bypassed using DNA damage tolerance (DDT) pathways to avoid prolonged fork stalling and allow for completion of DNA replication. Rad18 is a central E3 ubiquitin ligase in DDT, which exists in a monoubiquitinated (Rad18•Ub) and nonubiquitinated form in human cells. We find that Rad18 is deubiquitinated when cells are tr...

متن کامل

Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage

The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H(2)O(2)-induced DNA damage. UVC...

متن کامل

6. Regulation of Y-family translesion synthesis (TLS) DNA polymerases by RAD18

The recruitment of the error-prone Y-Family Translesion Synthesis (TLS) DNA polymerases (Pol , Pol , Pol , and REV1) to damaged chromatin is partly dependent on their association with Lysine 164 (K164)mono-ubiquitylated PCNA. RAD18 is the major PCNA K164-directed E3 ubiquitin ligase in eukaryotic cells and therefore plays potentially important roles in TLS and mutagenesis. Accordingly, there is...

متن کامل

Phosphorylated Rad18 directs DNA Polymerase η to sites of stalled replication

The E3 ubiquitin ligase Rad18 guides DNA Polymerase eta (Polη) to sites of replication fork stalling and mono-ubiquitinates proliferating cell nuclear antigen (PCNA) to facilitate binding of Y family trans-lesion synthesis (TLS) DNA polymerases during TLS. However, it is unclear exactly how Rad18 is regulated in response to DNA damage and how Rad18 activity is coordinated with progression throu...

متن کامل

Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA

Translesion polymerase eta (polη) was characterized for its ability to replicate ultraviolet-induced DNA lesions that stall replicative polymerases, a process promoted by Rad18-dependent PCNA mono-ubiquitination. Recent findings have shown that polη also acts at intrinsically difficult to replicate sequences. However, the molecular mechanisms that regulate its access to these loci remain elusiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 20  شماره 

صفحات  -

تاریخ انتشار 2012